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ABSTRACT: Recently, four significantly different particulate composite modulus deri-
vations from the literature were found to yield the same theoretical “intrinsic modulus”
for a particulate composite. In this article, this new intrinsic modulus was successfully
combined with the generalized viscosity/modulus equation to yield a good fit of the
shear modulus–particulate concentration data of both Smallwood and Nielsen using a
variable intrinsic modulus. Some fillers yielded an intrinsic modulus that was close to
the Einstein limiting value ([G] 5 [h] 5 2.5), while other fillers yielded intrinsic moduli
that were either somewhat larger or somewhat smaller than this value. The intrinsic
modulus for carbon black in rubber was much larger than was Einstein’s predicted
value. However, intrinsic modulus values for Nielsen’s data for particulate composites
were smaller than were Einstein’s prediction at temperatures below the glass transi-
tion temperature of the matrix. The explanation for this phenomenon can easily be
understood from a review of the properties of the intrinsic modulus. Likewise, the
generalized viscosity/modulus equation was also successfully applied to available mod-
ulus literature for ceramics where voids were the particulate phase. When applied to
Wang’s data, the intrinsic modulus was found to be negative when describing the
compaction of voids in the hot isostatic pressing of a ceramic. For this application, the
modulus of a particulate composite as a function of the volume fraction of particles was
modified to describe the modulus as a function of porosity. For the sets of data analyzed,
values of the interaction coefficient and the packing fraction were not necessarily
unique if the data sets were limited to the lower particulate volume fractions. For
applications where a minimum amount of data was found to be available, a new
approach was introduced to address a relative measure of the compatibility of the
particle and the matrix using a new definition for Kraemer’s constant. © 2000 John Wiley
& Sons, Inc. J Appl Polym Sci 77: 1954–1963, 2000
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INTRODUCTION

Several significant attempts have been made in
the literature to derive equations to describe the

relative shear modulus of particulate-filled sys-
tems as a function of particulate concentration.1–7

These equations were derived using the measur-
able physical properties of the composite such as
the modulus of the filler, modulus of the matrix,
and Poisson’s ratio of the matrix. Unfortunately,
these equations have had only limited success in
fitting the available modulus–particulate concen-
tration data. Schwarzl et al.8 pointed out that a
major limitation of these mechanical property
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modulus derivations is that they did not include
effects for particle size, particle-size distribution,
or a maximum packing fraction. In addition, no
adjustable parameters were included in these me-
chanical property modulus derivations to account
for process variations.

Some relatively recent articles9–11 have indi-
cated that interest in the mechanical properties of
particulate-filled composites remains high. A se-
ries of articles12–16 that described the derivation
and development of a new generalized equation
that addresses the viscosity of suspensions as a
function of concentration has recently appeared
in the literature. This new model for the first time
addresses the detailed effects of particle size, par-
ticle-size distribution, and packing fraction on
viscosity. In addition, it has been shown that the
modulus of particulate composites17,18 can also be
effectively predicted as a function of concentra-
tion using this new model. In applying this new
equation to particulate composites, a new term
described as the “intrinsic modulus” was intro-
duced.

This article shows that the intrinsic modulus
can be either positive or negative depending on
the modulus of the particulate relative to that of
the matrix. In addition, it was also found that
values for the interaction coefficient, s, and the
packing fraction, fn, as predicted from this gen-
eralized viscosity/modulus model are not always
unique. This is particularly true if the data are
restricted to only the lower concentrations.

SELECTED APPLICATIONS FOR THE
GENERALIZED SUSPENSION VISCOSITY/
MODULUS EQUATION

The generalized equation describing the viscosi-
ty–concentration relationship for suspensions
was initially introduced by Sudduth12 in the fol-
lowing format:
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D 12s
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For the case where s51, the resulting equation
can be written as
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where h is the suspension viscosity; h0, the vis-
cosity of the suspending medium; [h], the intrinsic
viscosity; s, the particle interaction coefficient; f,
the suspension particle volume concentration;
and fn, the particle packing fraction.

Smallwood1 and Guth2 showed that the rela-
tive ratios of the viscosity are equivalent to the
relative ratios of the shear modulus. Conse-
quently, the above equations were also found to
be directly applicable to the evaluation of modu-
lus17 in particulate composites. In addition, Sud-
duth17 also introduced the intrinsic modulus that
was initially derived to apply primarily to partic-
ulate composites. The intrinsic modulus was de-
fined as
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Sudduth17 also showed that the intrinsic modu-
lus, [G], should be essentially equivalent to the
intrinsic viscosity, [ h], as

@G# 5 @h# (4)

As expected, the intrinsic modulus reduces to the
Einstein19,20 value of [G] 5 2.5 when the Einstein
assumptions are applied. These assumptions
specify both an incompressible particulate com-
posite such that Poisson’s ratio is n0 5 0.5 and a
spherical filler material modulus, Gf, that is sig-
nificantly greater than is the modulus of the ma-
trix, G0, such that Gf @ G0.

Also note that the intrinsic modulus can be
negative if the modulus of the filler, Gf, is less
than the modulus of the matrix, G0. Thus, the
Einstein intrinsic viscosity, [h], can be negative if
the shear modulus of the solute (or particle) is less
than the shear modulus of the solvent (or matrix).

The suspension viscosity data of Vand21 as in-
dicated in Figure 1 is an example of data that has
been found to yield an intrinsic viscosity of ap-
proximately 2.5. For reference, a plot of the com-
puter-generated locus of points characterizing the
minimum errors in fitting Vand’s data for each
possible packing fraction is indicated in Figure 2.
For all the data analyzed in this study including
Vand’s data, the following error function, E, was
minimized for each packing fraction:

E2 5 S1
nD O
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(5)
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where n is the number of data points; hi, the
viscosity/modulus from eq. (1); and hiM, the mea-
sured viscosity/modulus. Note that a clear mini-
mum error, E, is indicated for Vand’s data in
Figure 2, which, consequently, yielded a unique
value for the intrinsic viscosity, [h], the packing
fraction, fn, and the interaction coefficient, s.
Further details describing the computer program
used to calculate these constants will be ad-
dressed in a later publication.

The dynamic shear modulus data of Lewis and
Nielsen22 were evaluated as a function of the tem-
perature and the results are summarized in Fig-
ures 3 and 4. As indicated in Figures 3 and 4, it
was found that the intrinsic modulus rose to a
value of approximately 2.8 when the modulus
measurements were made at temperatures above
the Tg of the resin. The particulate composites
evaluated by Nielsen were prepared with glass
spheres in an epoxy matrix. As illustrated in Fig-
ure 4, when the measurement temperature de-
creased below the Tg of the resin, the modulus of
the resin apparently increased and began to ap-
proach the modulus of the particulate filler. The
reduction in the ratio of the modulus of the par-
ticulate to the modulus of the matrix satisfacto-

rily explains the reduction in the intrinsic modu-
lus.

It was also found that the intrinsic modulus
can be negative as indicated in Figure 5 for the
experimental data of Wang23 where the particu-
late is the voids being compacted in an alumina
ceramic. For this case, the voids as a particulate
would have had a much smaller modulus than
that of the matrix that was, in this instance,
alumina. Ironically, the alumina matrix material
started this compaction process as spherical ce-
ramic particles with a void content as the partic-
ulate phase. In addition, the void content would
be at its maximum at the beginning of the com-
paction process.

For the data of Smallwood1 summarized in Fig-
ure 6, an intrinsic modulus of approximately 4.1
was indicated for a carbon black filler in rubber.
However, for the Smallwood data, a minimum
error in fitting the data is not clearly indicated in
Figure 7. Therefore, a unique value for the inter-
action coefficient, s, and the packing fraction, fn,
was not clearly identified for Smallwood’s data for
carbon black in rubber. The packing fraction cho-
sen for calculation purposes in Figure 6 was a
value of fn 5 .64, which Lee24 indicated is the

Figure 1 Vand’s measured and calculated relative viscosity data versus volume
fraction.
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Figure 2 Percent error and associated analysis constants involved in fitting Vand’s
data to the generalized viscosity/modulus equation.

Figure 3 Nielsen’s measured and calculated relative modulus data versus volume
fraction for 10–20-micron particles.
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packing fraction for dense random packing of
spherical particles.

The apparent reason for this lack of fit for
Smallwood’s data can be partially indicated in the
expansion of eq. (1) using a McLaurin series to
give
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It is apparent that the first two terms are the
Einstein19,20 limiting terms for all possible values
for the particle interaction coefficient, s, and the
packing fraction, fn. It was also found that s and
fn always occur as a paired ratio for second-order
and higher expansion terms. This persistent ratio
of s/fn means that these two variables are hard to
define with unique values if only the first few
terms of eq. (6) adequately define the available
data. Sudduth16 showed that the first few terms
of eq. (6) can be written in the more common
Huggins’ form as

Shsp
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where hsp is the specific viscosity; K, the Kraemer
constant; and K9, the Huggins constant 5 (1/2)
1 K. Similarly, Sudduth16 showed that a Mac-
Laurin series expansion of eq. (1) can also be
written in the Kraemer form as
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The first few terms of eq. (10) can then be written
as

Figure 4 Intrinsic modulus values versus T 2 Tg for Nielsen’s data using 10–20-
micron glass spheres in epoxy matrix at fn 5 0.73.
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Figure 6 Smallwood’s measured and calculated relative modulus/viscosity for carbon
black in rubber versus volume fraction using the generalized modulus/viscosity equa-
tion.

Figure 5 Wang’s measured and calculated relative modulus for ceramic compaction
versus void fraction or volume fraction or using the generalized modulus/viscosity
equation.
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If either a Huggins’ plot of [(hsp/f) versus f] or a
Kraemer’s plot of {[ln(h/h0)/f] versus f} is essen-
tially linear over the available data set, then the
data may be inadequate to generate unique val-
ues of the interaction coefficient, s, and the max-
imum packing fraction, fn. For this type of data
limitation, then the error in fitting the data to eq.
(1) should be nearly identical for a significant
range of values for the packing fraction, fn. This
is clearly indicated in Figure 7 for the Smallwood
carbon black rubber data. For these results, the
locus of points forming the minimum errors eval-
uated for each packing fraction in fitting the data
yields an amazingly linear relationship between
the interaction coefficient, s, and the packing
fraction, fn.

For reference, both Huggins- and Kraemer-
type plots for Vand’s data are indicated in Figure
8. For this data set, neither the Huggins- nor the
Kraemer-type plots were linear over the whole

concentration data range available. This then
suggested that the probability of finding a unique
value of both s and fn was high. As previously
indicated in Figure 2, it was, in fact, found that a
unique value of the interaction coefficient, s, and
the packing fraction, fn, were obtained for Vand’s
data.

However, independent of whether a unique
value can be obtained for s and fn, a unique value
can always be found for the intrinsic viscosity, [h],
as the volume fraction of particulate/solute ap-
proaches 0 or as f 3 0. This result is clearly
indicated in eqs. (7) and (11) as f 3 0.

It is well known that Huggins’ constant and
Kraemer’s constant are related as

K9 5 S1
2D 1 K (12)

Sudduth16 also reviewed available experimental
Huggins-type constants from the literature and
found that they typically fall well within the
range of 0 # K9 # 1. This range for the Huggins
constant would correspond to a range for a Krae-
mer constant of 20.5 # K # 0.5.

Figure 7 Percent error and associated analysis constants involved in fitting Small-
wood’s modulus data for carbon black in rubber.
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If a good solvent requires a Huggins’ constant
of less than 0.5, then a negative Kraemer’s con-
stant would appear to be required. If Kraemer’s
constant must be negative for good-to-excellent
solute/solvent systems, then at least one of the
constants in eq. (9) must be negative. Since the
packing fraction ranges from 0 # fn # 1 and
cannot be negative by definition, then either the
interaction coefficient, [s], must be negative or
the Einstein intrinsic viscosity, [h], must be neg-
ative.

As discussed earlier, the intrinsic modulus can
be negative if the modulus of the filler, Gf, is less
than the modulus of the matrix, G0. Similarly, it
would be expected that the Einstein intrinsic vis-
cosity, [h], can be negative if the shear modulus of
the solute (or particle) is less than the shear mod-
ulus of the solvent (or matrix). However, since the
intrinsic viscosity, [h], for most polymer solutions
and suspensions is predominantly positive, the
obvious conclusion is that for polymer solutes or
for particles the interaction coefficient, s, must be
negative to yield a Huggins’ constant of less than
0.5. Thus, for good-to-excellent solutions, it would
be expected that the interaction coefficient, s,
would be negative.

It is also important to note that Kraemer’s
constant contains all three of the primary vari-

ables in eq. (1). In addition, Kraemer’s constant
has been shown to be a direct measure of the
solubility of the solute or particle in a solution or
a composite. Therefore, a plot of Kraemer’s con-
stant for the locus of points of the solutions to eq.
(1) should be a direct measure of the compatibility
of the solute or particle in a solvent or matrix.

For reference, the locus of points representing
the minimum data-fitting errors for the data of
Vand, Nielsen, and Smallwood are summarized in
Figure 9. Note that each of these sets of data
represents Kraemer’s constants that are positive
over the whole range of the locus of points repre-
senting these error minimums. Since Vand’s data
represents a known suspension, it would be ex-
pected that the locus of points for Kraemer’s con-
stants in Figure 9 would be large and predomi-
nantly positive.

It is interesting that Kraemer’s constants for
Nielsen’s data are more positive at the higher
temperatures. Interestingly, as the temperature
is reduced, these Kraemer’s constants tended to
be reduced, suggesting that the glass particles
and the epoxy matrix start to improve compat-
ability as the temperature is reduced. Note, how-
ever, that there is a minimum in these data just
below the Tg. It is not yet clear why Kraemer’s
constant for Nielsen’s data would increase again

Figure 8 Huggins- and Kraemer-type plots of Vand’s data.
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after reaching a minimum below the Tg. The final
decrease in the Kraemer constant after this in-
crease would again appear to be related to an
increase in the compatability between the matrix
and the particulate.

Finally, Kraemer’s constants for Smallwood’s
data are lower than for either of the other two sets
of data in Figure 9, suggesting that these carbon
particles and rubber develop a better compatibil-
ity than for the materials associated with the

Figure 9 Kraemer’s constants for Nielsen’s Smallwood’s, and Vand’s data analysis.

Figure 10 Kraemer’s constants for Wang’s ceramic compaction data analysis.
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other sets of data. For reference, Kraemer’s con-
stants for the locus of points for Wang’s data are
also indicated in Figure 10. However, for this set
of data, the interaction coefficient is positive and
the intrinsic viscosity is negative. Since the inter-
action coefficient does not dominate the sign of
Kraemer’s constant for this case, it is not yet clear
that the negative Kraemer constant is a direct
indication that the voids form a solution in the
alumina matrix during compaction.

CONCLUSIONS

It was shown that the intrinsic modulus can be
effectively used in support of the generalized vis-
cosity model. Even though the intrinsic modulus
was found to encompass a wide range of potential
positive values, it can also approach the Einstein
value of 2.5 for spherical particles under specific
conditions. It was also shown that the intrinsic
modulus can be negative as was found for the
Wang void compaction data.

For the sets of data analyzed, it was found that
values of the interaction coefficient and the pack-
ing fraction were not necessarily unique if the
data sets are limited to the lower particulate vol-
ume fractions. For those cases where a minimum
amount of data is available, a new approach was
introduced to address a relative measure of the
compatibility of the particle and the matrix using
Kraemer’s constant.
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